generate_synthetic_control_data#
- causalpy.data.simulate_data.generate_synthetic_control_data(N=100, treatment_time=70, grw_mu=0.25, grw_sigma=1, lowess_kwargs={'frac': 0.2, 'it': 0})[source]#
Generates data for synthetic control example.
- Parameters:
N – Number of data points
treatment_time – Index where treatment begins in the generated dataframe
grw_mu – Mean of Gaussian Random Walk
grw_sigma – Standard deviation of Gaussian Random Walk
- Lowess_kwargs:
Keyword argument dictionary passed to statsmodels lowess
Example
>>> from causalpy.data.simulate_data import generate_synthetic_control_data >>> df, weightings_true = generate_synthetic_control_data( ... treatment_time=70 ... )