LinearRegression#

class causalpy.pymc_models.LinearRegression[source]#

Custom PyMC model for linear regression.

Defines the PyMC model

\[ \begin{align}\begin{aligned}\beta &\sim \mathrm{Normal}(0, 50)\\\sigma &\sim \mathrm{HalfNormal}(1)\\\mu &= X * \beta\\y &\sim \mathrm{Normal}(\mu, \sigma)\end{aligned}\end{align} \]

Example

>>> import causalpy as cp
>>> import numpy as np
>>> from causalpy.pymc_models import LinearRegression
>>> rd = cp.load_data("rd")
>>> X = rd[["x", "treated"]]
>>> y = np.asarray(rd["y"]).reshape((rd["y"].shape[0],1))
>>> lr = LinearRegression(sample_kwargs={"progressbar": False})
>>> lr.fit(X, y, coords={
...                 'coeffs': ['x', 'treated'],
...                 'obs_indx': np.arange(rd.shape[0])
...                },
... )
Inference data...

Methods

LinearRegression.__init__([sample_kwargs])

LinearRegression.add_coord(name[, values, ...])

Registers a dimension coordinate with the model.

LinearRegression.add_coords(coords, *[, lengths])

Vectorized version of Model.add_coord.

LinearRegression.add_named_variable(var[, dims])

Add a random graph variable to the named variables of the model.

LinearRegression.build_model(X, y, coords)

Defines the PyMC model

LinearRegression.calculate_cumulative_impact(impact)

LinearRegression.calculate_impact(y_true, y_pred)

LinearRegression.check_start_vals(start)

Check that the starting values for MCMC do not cause the relevant log probability to evaluate to something invalid (e.g. Inf or NaN).

LinearRegression.compile_d2logp([vars, ...])

Compiled log probability density hessian function.

LinearRegression.compile_dlogp([vars, jacobian])

Compiled log probability density gradient function.

LinearRegression.compile_fn(outs, *[, ...])

Compiles an PyTensor function

LinearRegression.compile_logp([vars, ...])

Compiled log probability density function.

LinearRegression.create_value_var(rv_var, *, ...)

Create a TensorVariable that will be used as the random variable's "value" in log-likelihood graphs.

LinearRegression.d2logp([vars, jacobian, ...])

Hessian of the models log-probability w.r.t.

LinearRegression.debug([point, fn, verbose])

Debug model function at point.

LinearRegression.dlogp([vars, jacobian])

Gradient of the models log-probability w.r.t.

LinearRegression.eval_rv_shapes()

Evaluates shapes of untransformed AND transformed free variables.

LinearRegression.fit(X, y[, coords])

Draw samples from posterior, prior predictive, and posterior predictive distributions, placing them in the model's idata attribute.

LinearRegression.initial_point([random_seed])

Computes the initial point of the model.

LinearRegression.logp([vars, jacobian, sum])

Elemwise log-probability of the model.

LinearRegression.logp_dlogp_function([...])

Compile an PyTensor function that computes logp and gradient.

LinearRegression.make_obs_var(rv_var, data, ...)

Create a TensorVariable for an observed random variable.

LinearRegression.name_for(name)

Checks if name has prefix and adds if needed

LinearRegression.name_of(name)

Checks if name has prefix and deletes if needed

LinearRegression.point_logps([point, round_vals])

Computes the log probability of point for all random variables in the model.

LinearRegression.predict(X)

Predict data given input data X

LinearRegression.print_coefficients(labels)

LinearRegression.profile(outs, *[, n, ...])

Compiles and profiles an PyTensor function which returns outs and takes values of model vars as a dict as an argument.

LinearRegression.register_data_var(data[, dims])

Register a data variable with the model.

LinearRegression.register_rv(rv_var, name, *)

Register an (un)observed random variable with the model.

LinearRegression.replace_rvs_by_values(...)

Clone and replace random variables in graphs with their value variables.

LinearRegression.score(X, y)

Score the Bayesian \(R^2\) given inputs X and outputs y.

LinearRegression.set_data(name, values[, coords])

Changes the values of a data variable in the model.

LinearRegression.set_dim(name, new_length[, ...])

Update a mutable dimension.

LinearRegression.set_initval(rv_var, initval)

Sets an initial value (strategy) for a random variable.

LinearRegression.shape_from_dims(dims)

LinearRegression.to_graphviz(*[, var_names, ...])

Produce a graphviz Digraph from a PyMC model.

LinearRegression.update_start_vals(a, b)

Update point a with b, without overwriting existing keys.

Attributes

basic_RVs

List of random variables the model is defined in terms of (which excludes deterministics).

continuous_value_vars

All the continuous value variables in the model

coords

Coordinate values for model dimensions.

datalogp

PyTensor scalar of log-probability of the observed variables and potential terms

dim_lengths

The symbolic lengths of dimensions in the model.

discrete_value_vars

All the discrete value variables in the model

isroot

observedlogp

PyTensor scalar of log-probability of the observed variables

parent

potentiallogp

PyTensor scalar of log-probability of the Potential terms

prefix

root

unobserved_RVs

List of all random variables, including deterministic ones.

unobserved_value_vars

List of all random variables (including untransformed projections), as well as deterministics used as inputs and outputs of the model's log-likelihood graph

value_vars

List of unobserved random variables used as inputs to the model's log-likelihood (which excludes deterministics).

varlogp

PyTensor scalar of log-probability of the unobserved random variables (excluding deterministic).

varlogp_nojac

PyTensor scalar of log-probability of the unobserved random variables (excluding deterministic) without jacobian term.

__init__(sample_kwargs=None)#
Parameters:

sample_kwargs (Optional[Dict[str, Any]]) – A dictionary of kwargs that get unpacked and passed to the pymc.sample() function. Defaults to an empty dictionary.

static __new__(cls, *args, model=UNSET, **kwargs)#
Parameters:

model (Literal[UNSET] | None | ~pymc.model.core.Model)