LinearRegression#
- class causalpy.pymc_models.LinearRegression[source]#
Custom PyMC model for linear regression.
Defines the PyMC model
\[ \begin{align}\begin{aligned}\beta &\sim \mathrm{Normal}(0, 50)\\\sigma &\sim \mathrm{HalfNormal}(1)\\\mu &= X * \beta\\y &\sim \mathrm{Normal}(\mu, \sigma)\end{aligned}\end{align} \]Example
>>> import causalpy as cp >>> import numpy as np >>> from causalpy.pymc_models import LinearRegression >>> rd = cp.load_data("rd") >>> X = rd[["x", "treated"]] >>> y = np.asarray(rd["y"]).reshape((rd["y"].shape[0],1)) >>> lr = LinearRegression(sample_kwargs={"progressbar": False}) >>> lr.fit(X, y, coords={ ... 'coeffs': ['x', 'treated'], ... 'obs_indx': np.arange(rd.shape[0]) ... }, ... ) Inference data...
Methods
LinearRegression.__init__
([sample_kwargs])LinearRegression.add_coord
(name[, values, ...])Registers a dimension coordinate with the model.
LinearRegression.add_coords
(coords, *[, lengths])Vectorized version of
Model.add_coord
.LinearRegression.add_named_variable
(var[, dims])Add a random graph variable to the named variables of the model.
LinearRegression.build_model
(X, y, coords)Defines the PyMC model
LinearRegression.calculate_impact
(y_true, y_pred)Check that the starting values for MCMC do not cause the relevant log probability to evaluate to something invalid (e.g. Inf or NaN).
LinearRegression.compile_d2logp
([vars, ...])Compiled log probability density hessian function.
LinearRegression.compile_dlogp
([vars, jacobian])Compiled log probability density gradient function.
LinearRegression.compile_fn
(outs, *[, ...])Compiles an PyTensor function
LinearRegression.compile_logp
([vars, ...])Compiled log probability density function.
LinearRegression.create_value_var
(rv_var, *, ...)Create a
TensorVariable
that will be used as the random variable's "value" in log-likelihood graphs.LinearRegression.d2logp
([vars, jacobian, ...])Hessian of the models log-probability w.r.t.
LinearRegression.debug
([point, fn, verbose])Debug model function at point.
LinearRegression.dlogp
([vars, jacobian])Gradient of the models log-probability w.r.t.
Evaluates shapes of untransformed AND transformed free variables.
LinearRegression.fit
(X, y[, coords])Draw samples from posterior, prior predictive, and posterior predictive distributions, placing them in the model's idata attribute.
LinearRegression.initial_point
([random_seed])Computes the initial point of the model.
LinearRegression.logp
([vars, jacobian, sum])Elemwise log-probability of the model.
Compile an PyTensor function that computes logp and gradient.
LinearRegression.make_obs_var
(rv_var, data, ...)Create a TensorVariable for an observed random variable.
Checks if name has prefix and adds if needed
LinearRegression.name_of
(name)Checks if name has prefix and deletes if needed
LinearRegression.point_logps
([point, round_vals])Computes the log probability of point for all random variables in the model.
Predict data given input data X
LinearRegression.profile
(outs, *[, n, ...])Compiles and profiles an PyTensor function which returns
outs
and takes values of model vars as a dict as an argument.LinearRegression.register_data_var
(data[, dims])Register a data variable with the model.
LinearRegression.register_rv
(rv_var, name, *)Register an (un)observed random variable with the model.
Clone and replace random variables in graphs with their value variables.
LinearRegression.score
(X, y)Score the Bayesian \(R^2\) given inputs
X
and outputsy
.LinearRegression.set_data
(name, values[, coords])Changes the values of a data variable in the model.
LinearRegression.set_dim
(name, new_length[, ...])Update a mutable dimension.
LinearRegression.set_initval
(rv_var, initval)Sets an initial value (strategy) for a random variable.
LinearRegression.to_graphviz
(*[, var_names, ...])Produce a graphviz Digraph from a PyMC model.
Update point a with b, without overwriting existing keys.
Attributes
basic_RVs
List of random variables the model is defined in terms of (which excludes deterministics).
continuous_value_vars
All the continuous value variables in the model
coords
Coordinate values for model dimensions.
datalogp
PyTensor scalar of log-probability of the observed variables and potential terms
dim_lengths
The symbolic lengths of dimensions in the model.
discrete_value_vars
All the discrete value variables in the model
isroot
observedlogp
PyTensor scalar of log-probability of the observed variables
parent
potentiallogp
PyTensor scalar of log-probability of the Potential terms
prefix
root
unobserved_RVs
List of all random variables, including deterministic ones.
unobserved_value_vars
List of all random variables (including untransformed projections), as well as deterministics used as inputs and outputs of the model's log-likelihood graph
value_vars
List of unobserved random variables used as inputs to the model's log-likelihood (which excludes deterministics).
varlogp
PyTensor scalar of log-probability of the unobserved random variables (excluding deterministic).
varlogp_nojac
PyTensor scalar of log-probability of the unobserved random variables (excluding deterministic) without jacobian term.