PropensityScore#

class causalpy.pymc_models.PropensityScore[source]#

Custom PyMC model for inverse propensity score models

Defines the PyMC model

\[ \begin{align}\begin{aligned}\beta &\sim \mathrm{Normal}(0, 1)\\\sigma &\sim \mathrm{HalfNormal}(1)\\\mu &= X * \beta\\p &= logit^{-1}(mu)\\t &\sim \mathrm{Bernoulli}(p)\end{aligned}\end{align} \]

Example

>>> import causalpy as cp
>>> import numpy as np
>>> from causalpy.pymc_models import PropensityScore
>>> df = cp.load_data('nhefs')
>>> X = df[["age", "race"]]
>>> t = np.asarray(df["trt"])
>>> ps = PropensityScore(sample_kwargs={"progressbar": False})
>>> ps.fit(X, t, coords={
...                 'coeffs': ['age', 'race'],
...                 'obs_indx': np.arange(df.shape[0])
...                },
... )
Inference...

Methods

PropensityScore.__init__([sample_kwargs])

PropensityScore.add_coord(name[, values, ...])

Registers a dimension coordinate with the model.

PropensityScore.add_coords(coords, *[, lengths])

Vectorized version of Model.add_coord.

PropensityScore.add_named_variable(var[, dims])

Add a random graph variable to the named variables of the model.

PropensityScore.build_model(X, t, coords)

Defines the PyMC propensity model

PropensityScore.calculate_cumulative_impact(impact)

PropensityScore.calculate_impact(y_true, y_pred)

PropensityScore.check_start_vals(start)

Check that the starting values for MCMC do not cause the relevant log probability to evaluate to something invalid (e.g. Inf or NaN).

PropensityScore.compile_d2logp([vars, ...])

Compiled log probability density hessian function.

PropensityScore.compile_dlogp([vars, jacobian])

Compiled log probability density gradient function.

PropensityScore.compile_fn(outs, *[, ...])

Compiles an PyTensor function

PropensityScore.compile_logp([vars, ...])

Compiled log probability density function.

PropensityScore.create_value_var(rv_var, *, ...)

Create a TensorVariable that will be used as the random variable's "value" in log-likelihood graphs.

PropensityScore.d2logp([vars, jacobian, ...])

Hessian of the models log-probability w.r.t.

PropensityScore.debug([point, fn, verbose])

Debug model function at point.

PropensityScore.dlogp([vars, jacobian])

Gradient of the models log-probability w.r.t.

PropensityScore.eval_rv_shapes()

Evaluates shapes of untransformed AND transformed free variables.

PropensityScore.fit(X, t, coords)

Draw samples from posterior, prior predictive, and posterior predictive distributions.

PropensityScore.initial_point([random_seed])

Computes the initial point of the model.

PropensityScore.logp([vars, jacobian, sum])

Elemwise log-probability of the model.

PropensityScore.logp_dlogp_function([...])

Compile an PyTensor function that computes logp and gradient.

PropensityScore.make_obs_var(rv_var, data, ...)

Create a TensorVariable for an observed random variable.

PropensityScore.name_for(name)

Checks if name has prefix and adds if needed

PropensityScore.name_of(name)

Checks if name has prefix and deletes if needed

PropensityScore.point_logps([point, round_vals])

Computes the log probability of point for all random variables in the model.

PropensityScore.predict(X)

Predict data given input data X

PropensityScore.print_coefficients(labels[, ...])

PropensityScore.profile(outs, *[, n, point, ...])

Compiles and profiles an PyTensor function which returns outs and takes values of model vars as a dict as an argument.

PropensityScore.register_data_var(data[, dims])

Register a data variable with the model.

PropensityScore.register_rv(rv_var, name, *)

Register an (un)observed random variable with the model.

PropensityScore.replace_rvs_by_values(...)

Clone and replace random variables in graphs with their value variables.

PropensityScore.score(X, y)

Score the Bayesian \(R^2\) given inputs X and outputs y.

PropensityScore.set_data(name, values[, coords])

Changes the values of a data variable in the model.

PropensityScore.set_dim(name, new_length[, ...])

Update a mutable dimension.

PropensityScore.set_initval(rv_var, initval)

Sets an initial value (strategy) for a random variable.

PropensityScore.shape_from_dims(dims)

PropensityScore.to_graphviz(*[, var_names, ...])

Produce a graphviz Digraph from a PyMC model.

PropensityScore.update_start_vals(a, b)

Update point a with b, without overwriting existing keys.

Attributes

basic_RVs

List of random variables the model is defined in terms of (which excludes deterministics).

continuous_value_vars

All the continuous value variables in the model

coords

Coordinate values for model dimensions.

datalogp

PyTensor scalar of log-probability of the observed variables and potential terms

dim_lengths

The symbolic lengths of dimensions in the model.

discrete_value_vars

All the discrete value variables in the model

isroot

observedlogp

PyTensor scalar of log-probability of the observed variables

parent

potentiallogp

PyTensor scalar of log-probability of the Potential terms

prefix

root

unobserved_RVs

List of all random variables, including deterministic ones.

unobserved_value_vars

List of all random variables (including untransformed projections), as well as deterministics used as inputs and outputs of the model's log-likelihood graph

value_vars

List of unobserved random variables used as inputs to the model's log-likelihood (which excludes deterministics).

varlogp

PyTensor scalar of log-probability of the unobserved random variables (excluding deterministic).

varlogp_nojac

PyTensor scalar of log-probability of the unobserved random variables (excluding deterministic) without jacobian term.

__init__(sample_kwargs=None)#
Parameters:

sample_kwargs (Optional[Dict[str, Any]]) – A dictionary of kwargs that get unpacked and passed to the pymc.sample() function. Defaults to an empty dictionary.

static __new__(cls, *args, model=UNSET, **kwargs)#
Parameters:

model (Literal[UNSET] | None | ~pymc.model.core.Model)