InstrumentalVariableRegression.check_start_vals#

InstrumentalVariableRegression.check_start_vals(start)#

Check that the starting values for MCMC do not cause the relevant log probability to evaluate to something invalid (e.g. Inf or NaN)

Parameters:

start (dict, or array of dict) – Starting point in parameter space (or partial point) Defaults to trace.point(-1)) if there is a trace provided and model.initial_point if not (defaults to empty dict). Initialization methods for NUTS (see init keyword) can overwrite the default.

Raises:
  • KeyError` if the parameters provided by start do not agree with th

  • parameters contained within the model.

  • pymc.exceptions.SamplingError` if the evaluation of the parameter

  • in start leads to an invalid (i.e. non-finite) state

Return type:

None