InstrumentalVariableRegression.check_start_vals#
- InstrumentalVariableRegression.check_start_vals(start)#
Check that the starting values for MCMC do not cause the relevant log probability to evaluate to something invalid (e.g. Inf or NaN)
- Parameters:
start (dict, or array of dict) – Starting point in parameter space (or partial point) Defaults to
trace.point(-1))
if there is a trace provided andmodel.initial_point
if not (defaults to empty dict). Initialization methods for NUTS (seeinit
keyword) can overwrite the default.- Raises:
KeyError` if the parameters provided by start do not agree with th –
parameters contained within the model. –
pymc.exceptions.SamplingError` if the evaluation of the parameter –
in start leads to an invalid (i.e. non-finite) state –
- Return type:
None