WeightedSumFitter#
- class causalpy.pymc_models.WeightedSumFitter[source]#
Used for synthetic control experiments.
Defines the PyMC model:
\[ \begin{align}\begin{aligned}\sigma &\sim \mathrm{HalfNormal}(1)\\\beta &\sim \mathrm{Dirichlet}(1,...,1)\\\mu &= X * \beta\\y &\sim \mathrm{Normal}(\mu, \sigma)\end{aligned}\end{align} \]Example
>>> import causalpy as cp >>> import numpy as np >>> from causalpy.pymc_models import WeightedSumFitter >>> sc = cp.load_data("sc") >>> X = sc[['a', 'b', 'c', 'd', 'e', 'f', 'g']] >>> y = np.asarray(sc['actual']).reshape((sc.shape[0], 1)) >>> wsf = WeightedSumFitter(sample_kwargs={"progressbar": False}) >>> wsf.fit(X,y) Inference data...
Methods
WeightedSumFitter.__init__
([sample_kwargs])WeightedSumFitter.add_coord
(name[, values, ...])Registers a dimension coordinate with the model.
WeightedSumFitter.add_coords
(coords, *[, ...])Vectorized version of
Model.add_coord
.WeightedSumFitter.add_named_variable
(var[, dims])Add a random graph variable to the named variables of the model.
WeightedSumFitter.build_model
(X, y, coords)Defines the PyMC model
WeightedSumFitter.calculate_impact
(y_true, ...)Check that the starting values for MCMC do not cause the relevant log probability to evaluate to something invalid (e.g. Inf or NaN).
WeightedSumFitter.compile_d2logp
([vars, ...])Compiled log probability density hessian function.
WeightedSumFitter.compile_dlogp
([vars, jacobian])Compiled log probability density gradient function.
WeightedSumFitter.compile_fn
(outs, *[, ...])Compiles an PyTensor function
WeightedSumFitter.compile_logp
([vars, ...])Compiled log probability density function.
WeightedSumFitter.create_value_var
(rv_var, ...)Create a
TensorVariable
that will be used as the random variable's "value" in log-likelihood graphs.WeightedSumFitter.d2logp
([vars, jacobian, ...])Hessian of the models log-probability w.r.t.
WeightedSumFitter.debug
([point, fn, verbose])Debug model function at point.
WeightedSumFitter.dlogp
([vars, jacobian])Gradient of the models log-probability w.r.t.
Evaluates shapes of untransformed AND transformed free variables.
WeightedSumFitter.fit
(X, y[, coords])Draw samples from posterior, prior predictive, and posterior predictive distributions, placing them in the model's idata attribute.
WeightedSumFitter.initial_point
([random_seed])Computes the initial point of the model.
WeightedSumFitter.logp
([vars, jacobian, sum])Elemwise log-probability of the model.
Compile an PyTensor function that computes logp and gradient.
WeightedSumFitter.make_obs_var
(rv_var, data, ...)Create a TensorVariable for an observed random variable.
Checks if name has prefix and adds if needed
Checks if name has prefix and deletes if needed
WeightedSumFitter.point_logps
([point, ...])Computes the log probability of point for all random variables in the model.
Predict data given input data X
WeightedSumFitter.profile
(outs, *[, n, ...])Compiles and profiles an PyTensor function which returns
outs
and takes values of model vars as a dict as an argument.WeightedSumFitter.register_data_var
(data[, dims])Register a data variable with the model.
WeightedSumFitter.register_rv
(rv_var, name, *)Register an (un)observed random variable with the model.
Clone and replace random variables in graphs with their value variables.
WeightedSumFitter.score
(X, y)Score the Bayesian \(R^2\) given inputs
X
and outputsy
.WeightedSumFitter.set_data
(name, values[, ...])Changes the values of a data variable in the model.
WeightedSumFitter.set_dim
(name, new_length)Update a mutable dimension.
WeightedSumFitter.set_initval
(rv_var, initval)Sets an initial value (strategy) for a random variable.
WeightedSumFitter.to_graphviz
(*[, ...])Produce a graphviz Digraph from a PyMC model.
Update point a with b, without overwriting existing keys.
Attributes
basic_RVs
List of random variables the model is defined in terms of (which excludes deterministics).
continuous_value_vars
All the continuous value variables in the model
coords
Coordinate values for model dimensions.
datalogp
PyTensor scalar of log-probability of the observed variables and potential terms
dim_lengths
The symbolic lengths of dimensions in the model.
discrete_value_vars
All the discrete value variables in the model
isroot
observedlogp
PyTensor scalar of log-probability of the observed variables
parent
potentiallogp
PyTensor scalar of log-probability of the Potential terms
prefix
root
unobserved_RVs
List of all random variables, including deterministic ones.
unobserved_value_vars
List of all random variables (including untransformed projections), as well as deterministics used as inputs and outputs of the model's log-likelihood graph
value_vars
List of unobserved random variables used as inputs to the model's log-likelihood (which excludes deterministics).
varlogp
PyTensor scalar of log-probability of the unobserved random variables (excluding deterministic).
varlogp_nojac
PyTensor scalar of log-probability of the unobserved random variables (excluding deterministic) without jacobian term.