SyntheticControl#
- class causalpy.experiments.prepostfit.SyntheticControl[source]#
A wrapper around the PrePostFit class
- Parameters:
Example
>>> import causalpy as cp >>> df = cp.load_data("sc") >>> treatment_time = 70 >>> seed = 42 >>> result = cp.SyntheticControl( ... df, ... treatment_time, ... formula="actual ~ 0 + a + b + c + d + e + f + g", ... model=cp.pymc_models.WeightedSumFitter( ... sample_kwargs={ ... "target_accept": 0.95, ... "random_seed": seed, ... "progressbar": False, ... } ... ), ... )
Methods
SyntheticControl.__init__
(data, ...[, model])SyntheticControl.bayesian_plot
(*args, **kwargs)Plot the results
SyntheticControl.input_validation
(data, ...)Validate the input data and model formula for correctness
SyntheticControl.ols_plot
([round_to])Plot the results
SyntheticControl.plot
(*args, **kwargs)Plot the model.
SyntheticControl.print_coefficients
([round_to])Ask the model to print its coefficients.
SyntheticControl.summary
([round_to])Print summary of main results and model coefficients.
Attributes
expt_type
idata
Return the InferenceData object of the model.
supports_bayes
supports_ols
- __init__(data, treatment_time, formula, model=None, **kwargs)#
- __new__(**kwargs)#