PrePostFit#

class causalpy.experiments.prepostfit.PrePostFit[source]#

A base class for quasi-experimental designs where parameter estimation is based on just pre-intervention data. This class is not directly invoked by the user.

Methods

PrePostFit.__init__(data, treatment_time, ...)

PrePostFit.bayesian_plot([round_to])

Plot the results

PrePostFit.input_validation(data, treatment_time)

Validate the input data and model formula for correctness

PrePostFit.ols_plot([round_to])

Plot the results

PrePostFit.plot(*args, **kwargs)

Plot the model.

PrePostFit.print_coefficients([round_to])

Ask the model to print its coefficients.

PrePostFit.summary([round_to])

Print summary of main results and model coefficients.

Attributes

idata

Return the InferenceData object of the model.

supports_bayes

supports_ols

__init__(data, treatment_time, formula, model=None, **kwargs)[source]#
Parameters:
Return type:

None

__new__(**kwargs)#